1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
from builtins import range from classifier.knn_classifier import KNN import pandas as pd import numpy as np from sklearn import utils from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import warnings
warnings.filterwarnings("ignore")
def load_iris(iris_path, shuffle=True, tsize=0.8): """ 加载iris数据 """ data = pd.read_csv(iris_path, header=0, delimiter=',')
if shuffle: data = utils.shuffle(data)
species_dict = { 'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2 } data['Species'] = data['Species'].map(species_dict)
data_x = np.array( [data['SepalLengthCm'], data['SepalWidthCm'], data['PetalLengthCm'], data['PetalWidthCm']]).T data_y = data['Species']
x_train, x_test, y_train, y_test = train_test_split(data_x, data_y, train_size=tsize, test_size=(1 - tsize), shuffle=False)
return x_train, x_test, y_train, y_test
def load_german_data(data_path, shuffle=True, tsize=0.8): data_list = pd.read_csv(data_path, header=None, sep='\s+')
data_array = data_list.values height, width = data_array.shape[:2] data_x = data_array[:, :(width - 1)] data_y = data_array[:, (width - 1)]
x_train, x_test, y_train, y_test = train_test_split(data_x, data_y, train_size=tsize, test_size=(1 - tsize), shuffle=shuffle)
y_train = np.array(list(map(lambda x: 1 if x == 2 else 0, y_train))) y_test = np.array(list(map(lambda x: 1 if x == 2 else 0, y_test)))
return x_train, x_test, y_train, y_test
def compute_accuracy(y, y_pred): num = y.shape[0] num_correct = np.sum(y_pred == y) acc = float(num_correct) / num return acc
def cross_validation(x_train, y_train, k_choices, num_folds=5, Classifier=KNN): X_train_folds = np.array_split(x_train, num_folds) y_train_folds = np.array_split(y_train, num_folds)
k_to_accuracies = {} for k in k_choices: k_accuracies = [] for i in range(num_folds): x_folds = X_train_folds.copy() y_folds = y_train_folds.copy()
x_vals = x_folds.pop(i) x_trains = np.vstack(x_folds)
y_vals = y_folds.pop(i) y_trains = np.hstack(y_folds)
classifier = Classifier() classifier.train(x_trains, y_trains)
y_val_pred = classifier.predict(x_vals, k=k) k_accuracies.append(compute_accuracy(y_vals, y_val_pred)) k_to_accuracies[k] = k_accuracies
return k_to_accuracies
def plot(k_choices, k_to_accuracies): for k in k_choices: accuracies = k_to_accuracies[k] plt.scatter([k] * len(accuracies), accuracies)
accuracies_mean = np.array([np.mean(v) for k, v in sorted(k_to_accuracies.items())]) accuracies_std = np.array([np.std(v) for k, v in sorted(k_to_accuracies.items())]) plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std) plt.title('Cross-validation on k') plt.xlabel('k') plt.ylabel('Cross-validation accuracy') plt.show()
if __name__ == '__main__':
data_path = '/home/zj/data/german/german.data-numeric' x_train, x_test, y_train, y_test = load_german_data(data_path, shuffle=True, tsize=0.8)
x_train = x_train.astype(np.double) x_test = x_test.astype(np.double) mu = np.mean(x_train, axis=0) var = np.var(x_train, axis=0) eps = 1e-8 x_train = (x_train - mu) / np.sqrt(var + eps) x_test = (x_test - mu) / np.sqrt(var + eps)
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 30, 50, 100] k_to_accuracies = cross_validation(x_train, y_train, k_choices)
for k in sorted(k_to_accuracies): for accuracy in k_to_accuracies[k]: print('k = %d, accuracy = %f' % (k, accuracy))
plot(k_choices, k_to_accuracies)
accuracies_mean = np.array([np.mean(v) for k, v in sorted(k_to_accuracies.items())]) k = k_choices[np.argmax(accuracies_mean)] print('最好的k值是:%d' % k)
classifier = KNN() classifier.train(x_train, y_train)
y_test_pred = classifier.predict(x_test, k=k) y_test_acc = compute_accuracy(y_test, y_test_pred) print('测试集精度为:%f' % y_test_acc)
|