大海

SIMPLE THE COMPLEX

原文地址:Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

论文基于Inception结构和残差连接实现了3个网络:

  1. Inception-v4
  2. Inception-ResNet-v1
  3. Inception-ResNet-v2

通过实验证明了残差连接能够很好的改善训练速度,同时证明了非残差的Inception网络同样能够实现最好的分类精度

阅读全文 »

在目标检测和目标识别任务中,常用以下几种评价标准:

  1. 参数数目
  2. FLOPs
  3. FPS
  4. Accuracy/Error Rate
  5. mAP

结合PyTorch完成了相关评价标准的实现:zjZSTU/Evaluation-Metrics

相关实现文档:Evaluation-Metrics

阅读全文 »

论文Rethinking the Inception Architecture for Computer VisionGoogLeNetGoogleNet_BN的实现做了进一步的解释,同时提出了新的Inception模块和损失函数LSR(label-smoothing regularizer)

上一篇实现了Inception_v2架构,经过测试发现其损失收敛速度确实高于之前的GoogLeNet_BN。本文在此基础上实现Inception_v3架构

论文翻译地址:[译]Rethinking the Inception Architecture for Computer Vision

Inception_v2实现:[GoogLeNet]Inception_v2

发现一个在线可视化工具:Netscope CNN Analyzer,里面提供了Inception v3的可视化及详细参数:Inception v3

阅读全文 »

论文Rethinking the Inception Architecture for Computer VisionGoogLeNetGoogleNet_BN的实现做了进一步的解释,同时提出了新的Inception模块和损失函数LSR(label-smoothing regularizer),本文实现其中的Inception_v2架构

论文翻译地址:[译]Rethinking the Inception Architecture for Computer Vision

阅读全文 »