神经网络推导-矩阵计算
为了理清如何进行神经网络的前向传播和反向传播的推导,找了很多资料,前向传播比较简单,重点在于如何进行反向传播的梯度计算
cs231n
课程推荐的计算方式是先进行单个元素求导,再逐步泛化到批量数据求梯度,参考
为了理清如何进行神经网络的前向传播和反向传播的推导,找了很多资料,前向传播比较简单,重点在于如何进行反向传播的梯度计算
cs231n
课程推荐的计算方式是先进行单个元素求导,再逐步泛化到批量数据求梯度,参考
在pytorch
的autograd
包中,利用Jacobian
(雅格比)矩阵进行梯度的计算。学习实值标量函数、实值向量函数和实值矩阵函数相对于实向量变元或矩阵变元的偏导
输入批量数据到神经网络,进行前向传播和反向传播的推导
输入单个数据到神经网络,进行前向传播和反向传播的推导
神经网络是卷积神经网络的基础,其包含的层架构、激活函数、反向传播、正则化等等内容都可以应用于卷积神经网络