1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
import numpy as np
class NN(object):
def __init__(self, hidden_dims, input_dim=32 * 32 * 3, num_classes=10, weight_scale=1e-2, learning_rate=1e-3, reg=0.0, dtype=np.float64): self.reg = reg self.lr = learning_rate self.dtype = dtype self.params = {} self.num_layers = len(hidden_dims) + 1
if hidden_dims is None: self.params['W1'] = weight_scale * np.random.randn(input_dim, num_classes) self.params['b1'] = np.zeros((1, num_classes)) else: for i in range(self.num_layers): if i == 0: in_dim = input_dim out_dim = hidden_dims[i] elif i == (self.num_layers - 1): in_dim = hidden_dims[i - 1] out_dim = num_classes else: in_dim = hidden_dims[i - 1] out_dim = hidden_dims[i]
self.params['W%d' % (i + 1)] = weight_scale * np.random.randn(in_dim, out_dim) self.params['b%d' % (i + 1)] = np.zeros((1, out_dim))
self.configs = {} config = {'learning_rate': learning_rate} for k in self.params.keys(): self.configs[k] = config.copy()
for k, v in self.params.items(): self.params[k] = v.astype(dtype)
def train(self, X, y, num_iters=100, batch_size=200, verbose=False): """ Inputs: - X: A numpy array of shape (N, D) containing training data; there are N training samples each of dimension D. - y: A numpy array of shape (N,) containing training labels; y[i] = c means that X[i] has label 0 <= c < C for C classes. - num_iters: (integer) number of steps to take when optimizing - batch_size: (integer) number of training examples to use at each step. - verbose: (boolean) If true, print progress during optimization.
Outputs: A list containing the value of the loss function at each training iteration. """ X = X.astype(self.dtype) num_train, dim = X.shape
loss_history = [] range_list = np.arange(0, num_train, step=batch_size) for it in range(num_iters): total_loss = 0 for i in range_list: X_batch = X[i:i + batch_size] y_batch = y[i:i + batch_size]
loss, grads = self.loss(X_batch, y_batch) total_loss += loss
for k in self.params.keys(): w = self.params[k] dw = grads[k]
next_w = w - self.lr * dw
self.params[k] = next_w
avg_loss = total_loss / len(range_list) loss_history.append(avg_loss)
if verbose and it % 100 == 0: print('iteration %d / %d: loss %f' % (it, num_iters, avg_loss))
return loss_history
def predict(self, X): """ Use the trained weights of this linear classifier to predict labels for data points.
Inputs: - X: A numpy array of shape (N, D) containing training data; there are N training samples each of dimension D.
Returns: - y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional array of length N, and each element is an integer giving the predicted class. """ scores, caches = self.forward(X) scores -= np.atleast_2d(np.max(scores, axis=1)).T exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
y_pred = np.argmax(probs, axis=1) return y_pred
def loss(self, X_batch, y_batch): """ Compute the loss function and its derivative. Subclasses will override this.
Inputs: - X_batch: A numpy array of shape (N, D) containing a minibatch of N data points; each point has dimension D. - y_batch: A numpy array of shape (N,) containing labels for the minibatch.
Returns: A tuple containing: - loss as a single float - gradient with respect to self.W; an array of the same shape as W """ scores, caches = self.forward(X_batch) data_loss, dout = self.softmax_loss(scores, y_batch)
reg_loss = 0 for i in range(self.num_layers): reg_loss += 0.5 * self.reg * np.sum(self.params['W%d' % (i + 1)] ** 2) loss = data_loss + reg_loss
grads = {} dx = None for i in reversed(range(self.num_layers)): cache = caches['cache%d' % (i + 1)] if i == (self.num_layers - 1): dx, dw, db = self.affine_backward(dout, cache) else: dx, dw, db = self.affine_relu_backward(dx, cache) grads['W%d' % (i + 1)] = dw + self.reg * self.params['W%d' % (i + 1)] grads['b%d' % (i + 1)] = db
return loss, grads
def forward(self, X): a = None z = None caches = {} for i in range(self.num_layers): if i == 0: a = X if i == (self.num_layers - 1): z, caches['cache%d' % self.num_layers] = self.affine_forward(a, self.params['W%d' % (self.num_layers)], self.params['b%d' % (self.num_layers)]) else: a, caches['cache%d' % (i + 1)] = self.affine_relu_forward(a, self.params['W%d' % (i + 1)], self.params['b%d' % (i + 1)])
scores = z return scores, caches
def affine_relu_forward(self, x, w, b): """ Convenience layer that perorms an affine transform followed by a ReLU
Inputs: - x: Input to the affine layer - w, b: Weights for the affine layer
Returns a tuple of: - out: Output from the ReLU - cache: Object to give to the backward pass """ a, fc_cache = self.affine_forward(x, w, b) out, relu_cache = self.relu_forward(a) cache = (fc_cache, relu_cache) return out, cache
def affine_relu_backward(self, dout, cache): """ Backward pass for the affine-relu convenience layer """ fc_cache, relu_cache = cache da = self.relu_backward(dout, relu_cache) dx, dw, db = self.affine_backward(da, fc_cache) return dx, dw, db
def affine_forward(self, x, w, b): """ Computes the forward pass for an affine (fully-connected) layer.
The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N examples, where each example x[i] has shape (d_1, ..., d_k). We will reshape each input into a vector of dimension D = d_1 * ... * d_k, and then transform it to an output vector of dimension M.
Inputs: - x: A numpy array containing input data, of shape (N, d_1, ..., d_k) - w: A numpy array of weights, of shape (D, M) - b: A numpy array of biases, of shape (M,)
Returns a tuple of: - out: output, of shape (N, M) - cache: (x, w, b) """ inputs = x.reshape(x.shape[0], -1) out = inputs.dot(w) + b.reshape(1, -1)
cache = (x, w, b) return out, cache
def affine_backward(self, dout, cache): """ Computes the backward pass for an affine layer.
Inputs: - dout: Upstream derivative, of shape (N, M) - cache: Tuple of: - x: Input data, of shape (N, d_1, ... d_k) - w: Weights, of shape (D, M) - b: Biases, of shape (M,)
Returns a tuple of: - dx: Gradient with respect to x, of shape (N, d1, ..., d_k) - dw: Gradient with respect to w, of shape (D, M) - db: Gradient with respect to b, of shape (M,) """ x, w, b = cache
dx = dout.dot(w.T).reshape(x.shape) dw = x.reshape(x.shape[0], -1).T.dot(dout) db = np.sum(dout, axis=0)
return dx, dw, db
def relu_forward(self, x): """ Computes the forward pass for a layer of rectified linear units (ReLUs).
Input: - x: Inputs, of any shape
Returns a tuple of: - out: Output, of the same shape as x - cache: x """ out = x.copy() out[x < 0] = 0
cache = x return out, cache
def relu_backward(self, dout, cache): """ Computes the backward pass for a layer of rectified linear units (ReLUs).
Input: - dout: Upstream derivatives, of any shape - cache: Input x, of same shape as dout
Returns: - dx: Gradient with respect to x """ dx, x = None, cache
dx = dout dx[x < 0] = 0
return dx
def softmax_loss(self, scores, y): num = y.shape[0]
exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
data_loss = -1.0 / num * np.sum(np.log(probs[range(num), y]))
dscores = scores dscores[range(num), y] -= 1 dscores /= num
return data_loss, dscores
def adam(self, w, dw, config=None): """ Uses the Adam update rule, which incorporates moving averages of both the gradient and its square and a bias correction term.
config format: - learning_rate: Scalar learning rate. - beta1: Decay rate for moving average of first moment of gradient. - beta2: Decay rate for moving average of second moment of gradient. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - m: Moving average of gradient. - v: Moving average of squared gradient. - t: Iteration number. """ if config is None: config = {} config.setdefault('learning_rate', 1e-3) config.setdefault('beta1', 0.9) config.setdefault('beta2', 0.999) config.setdefault('epsilon', 1e-8) config.setdefault('m', np.zeros_like(w)) config.setdefault('v', np.zeros_like(w)) config.setdefault('t', 0)
t = config['t'] + 1 m = config['beta1'] * config['m'] + (1 - config['beta1']) * dw mt = m / (1 - config['beta1'] ** t) v = config['beta2'] * config['v'] + (1 - config['beta2']) * (dw ** 2) vt = v / (1 - config['beta2'] ** t)
next_w = w - config['learning_rate'] * mt / (np.sqrt(vt) + config['epsilon'])
config['t'] = t config['m'] = m config['v'] = v
return next_w, config
|